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Abstract—Understanding and developing large applications
often leads to a situation where the developer becomes lost.
Software visualization aims to help with these problems by pro-
viding visual insights and helps to navigate, and, when properly
done, also to visually model software. Although the advantages
of virtual reality in software visualization have already been
demonstrated, relatively limited research has been done in the
area of programming.

In this paper, we present a virtual reality programming envi-
ronment, with built-in round-trip engineering support and run-
time compilation of source code that allows live programming.
The study carried out shows that users are capable of solving
complex programming tasks in our VR environment, which
performed better in terms of usability and user experience, but
the evaluation results also point to still persistent VR related
problems.

Index Terms—Virtual Reality, Model-Driven Engineering, Live
Programming, VR Keyboard, Hand Tracking.

I. INTRODUCTION
The feasibility of using Virtual Reality (VR) in software

engineering has been the subject of many research projects.
These projects focus mainly on visual analysis of software
engineering data and demonstrate the advantages of VR in
the context of spatial cognition [1], comprehension [2]–[4],
navigation and interaction [1], [4]. Although most of these
approaches visualize the source code, they do not provide an
efficient way of editing it. To do so, programmers must switch
from the virtual environment to the real environment. Although
it seems that the ability to directly edit code in an efficient
way would be crucial for any virtual environment focused on
software development, relatively little research has been done
in this area.

By combining VR software modeling tools that use the
Unified Modeling Language (UML) notation [4] with code
generation [5] we could potentially completely avoid direct
code editing; however, developers would need to model the
software using multiple views (types of diagrams). Such focus
switching might be counterproductive, and we believe that
developers should always have the ability to edit the code
directly or use only a subset of diagrams.

To bring the code editing features to virtual reality, it would
be necessary to completely redesign the traditional ’bento box’
development environment, which was originally designed to
be displayed on a single monitor. Some research projects
propose alternative designs of the development environment
to overcome the issues of traditional editors [6]–[8] and these

might also be more suitable for virtual reality. UML-based
approaches are particularly interesting since fragments of code
are attached to the corresponding elements of UML diagrams,
providing a fair level of abstraction, supporting round-trip
engineering, and developers should be already familiar with
this notation.

In this paper, we present a virtual reality programming
environment that enables developers to write, generate, edit,
compile, and run source code directly in virtual reality. The
organization of source code is inspired by Octo Bubbles;
therefore, the structure of the project is given by the UML class
diagram, and the fragments of source code are attached to its
elements. To evaluate our approach in terms of usability, we
conducted a study with 20 participants in which we compared
programming in our environment with programming in Unity.

II. RELATED WORK

Elliott et al. proposed a live coding environment built for
VR [1], which allows users to describe a 3D scene using
JavaScript code. Developers in this environment are presented
with a simple text editor, where they can type using a physical
keyboard. A similar approach in terms of code editing has
been presented by Oberhauser and Lecon [9]. In this case,
the code editor is not restricted to a simple file or fragment,
but developers can navigate through a more complex structure
visualized using space or a city metaphor. In both cases,
we consider traditional, purely text-based code editing, in
combination with relatively poor typing capabilities, as the
biggest shortcoming.

Several innovative 2D non-VR Integrated Development En-
vironments (IDE) have been proposed, e.g., Octo Bubbles [7],
Code Bubbles [6], [10], Code Canvas [8]. All of these are
based on the idea of organizing fine-grain code fragments on
a 2D canvas to enable programmers to focus only on relevant
parts of the code and juxtapose them in a more efficient way.
In Code Bubbles, selected code fragments are visualized via
fully editable and interactive views. During the evaluation, the
developers noted similarities with UML diagrams and thought
that UML integration would be natural and useful. Following
these findings, Jolak et al. proposed Octo Bubbles, where code
fragments are attached to elements of the UML class diagram.

Multiple systems have been presented that utilize 3D visu-
alizations to display UML diagrams, ranging from the simple
transfer of 2D UML diagrams into a 3D space [11], using



Fig. 1. VR programming environment from left: the whole VR scene, details of VR tablet with source code and class editor, UML class diagram on the wall.

multidimensional UML visualizations [12], to approaches us-
ing 3D geometry [13] or 3D geon diagrams [14].

Software visualization applications that use VR systems
have been proposed to help analyze the structure [15]–[17]
and architecture [18], [19] of existing systems and combine
VR systems with UML diagrams [20], [4].

Although live programming is quite popular in the music
industry or recently also in architectural design [21], live
programming and/or modeling generic software in VR systems
is still a challenge [9], [22]–[24], as most existing solutions
struggle with effective source code editing.

III. LIVE PROGRAMMING ENVIRONMENT IN VR

The proposed VR programming environment was created in
the Unity 3D game engine and its implementation is available
online1. The solution is primarily designed for VR headsets
with hand tracking, keyboard tracking, and passthrough capa-
bilities (we used Oculus Quest 2).

The environment consists of three main parts. The first is the
diagram canvas (Fig. 1, on the right), which is the area where
the UML class diagram is rendered. The second is a virtual
tablet (Fig. 1, center) that allows users to modify the selected
element of the class diagram or the source code attached to it.
It also provides a basic menu that allows users to save, load,
or compile the project. The third is the developer area (Fig.
1, on the left), which consists of the sandbox application and
the output window. The behavior of the sandbox application
is given by the produced source code, and the user can freely
interact with it using the interface in the bottom area.

INTERACTION

Users navigate through the virtual environment by walking,
leaning, crouching, and approaching scene objects. Due to
the size of the scene, other locomotion techniques (e.g.,
teleportation, flying) were not required.

1https://jakubkucecka.github.io/UML-based VR
LiveProgrammingEnvironment/

Interactions with scene objects are performed using the left
or right controllers. 2D / UI elements are selected by a ray
originating from the controller, and selection is confirmed by
the trigger button. 3D objects can be grabbed and moved by
a controller while holding the grip button.

To provide an efficient way of text input, we utilize multiple
techniques. The first is speech recognition. After analyzing
different options and comparing publications [25], [26], we
used the Google Cloud Speech API for speech recognition.
The resulting input method was not suitable for longer texts
and code fragments, so we kept it as an option only for
single-line entries. The second implemented method utilizes
passthrough and keyboard tracking capabilities of the selected
VR headset. Passthrough mode enables users to see their
hands and physical keyboard, but due to the low resolution
of passthrough cameras, key labels are not readable. Thus,
keyboard tracking is being used to provide a higher-resolution
overlay. Unfortunately, incompatibility between the Roslyn C#
compiler and the IL2CPP scripting back-end prevents us from
using the passthrough mode (IL2CPP required), so we were
forced to temporally visualize hands using a less accurate 3D
representation based on hand tracking data (Fig. 2), which
negatively affects typing speed and overall user experience.
Since keyboard tracking was supported with selected models
only, as the last input method, we provide traditional, canvas-
based, virtual keyboard, where keys are selected in the same
way as 2D / UI elements.

UML CLASS DIAGRAM RENDERING

The UML class diagram rendered on the diagram canvas
consists of standard UI primitives offered by the selected game
engine. The diagram is internally represented as a graph, where
the nodes are placed according to the Sugiyama layout, and the
edges follow rectilinear routing. We use the MSAGL library2

for graph layout and edge routing.

2https://github.com/microsoft/automatic-graph-layout



Fig. 2. VR Magic Keyboard with hand model.

ROUND-TRIP ENGINEERING & LIVE PROGRAMMING

Any change to the UML class diagram is reflected in the
source code and vice versa. This is achieved using a detailed
analysis of the source code provided by the Roslyn C# library3

as follows: 1) If the UML has been modified, we apply the
changes to the AST representation of the source code and
convert them to compilable source code. 2) If we modify the
source code directly, we use the AST representation to modify
the internal JSON object representation of the UML class dia-
gram. To create the initial UML class diagram from the source
code, we extract these six relations: association, dependency,
aggregation, composition, realization, and generalization. To
extract these relations, we defined a set of custom rules that
are specific to scripts developed in Unity 3D. These rules still
comply with the UML specification, which was confirmed by
senior software engineers who actively work with this notation.

The Roslyn C# library also provides means for live pro-
gramming by speeding up the compilation of modified source
code and allowing one to change the actual implementation of
scripts at runtime.

IV. EVALUATION
In the evaluation, we sought answers to the following

research questions:
1) Can software development in VR (using controllers,

speech, and a VR keyboard) be on a par with tradi-
tional software development on a 2D monitor (using a
keyboard and mouse)?

2) Can software development in VR improve the user
experience?

3) Can software development in VR reduce the time re-
quired to code computer programs?

We perform the evaluation in the context of game devel-
opment, on a prepared project of a simple escape game.
The goal of the game is to navigate the runner through
the environment (from start to finish) while avoiding static
and moving obstacles (barriers and ghosts). The game has 3
levels (Fig. 3) with increasing complexity. These levels are
impossible to complete without modification of the source
code.

3https://assetstore.unity.com/packages/tools/integration/
roslyn-c-runtime-compiler-142753

Fig. 3. Levels of the game used for evaluation.

In Level 1, it is necessary to adjust the speed of the ghost,
as it is too fast for the player to avoid it. This requires finding
the speed attribute in the script responsible for ghost behavior,
adjusting it to a smaller value than the speed of the runner,
saving the changes, and compiling the new version. In Level 2,
we prepared a series of barriers of different types that needed
to be removed or disabled, since when the runner touched
the barrier, the game returned to the initial state. Thus, the
participant has to find a script for each of the barriers, ideally
only the base class (referenced by a generalization relationship
in the diagram), modify it, save the changes, and compile
modified scripts. Level 3 is relatively long and contains a
section that is possible to pass only with great difficulty. Thus,
it is necessary to create a shortcut. One possibility is to create
a new object with a behavior similar to the finishing zone.
To achieve this, it is necessary to implement a procedure
that spawns a new prefab into the scene and adds proper
components to it. Afterwards, it is again required to save and
compile the changes.

The same game was implemented in two environments:
VR IDE and Unity 3D. Participants solve 3 tasks in both
environments, where in each task we ask them to modify the
source code of a single level, so that they are able to complete
it. Since the tasks were identical for both environments, all
even participants first solve the tasks in Unity 3D and the odd
participants first solve the tasks in VR IDE.

All participants successfully complete the tasks in both
environments. After completion of the tasks in one of the
environments, each participant completes two questionnaires.
The System Usability Scale (SUS) [27], which is an effective
tool for assessing the usability of an application, and the
User Experience Questionnaire (UEQ) [28], which is a fast
and reliable questionnaire to measure the user experience of
interactive applications. We also measure the time it takes
for each participant to complete specific tasks and collect
feedback. There were 20 participants in this evaluation. 16
participants were students from different faculties focused on
computer science, and 4 participants were from industry.

The results of the SUS questionnaire show that the VR IDE
scored 75.875 (STD = 3.8), which corresponds to grade B,
while Unity3D scored 52.25 (STD = 6.99), suggesting grade
D. Therefore, our environment performed better in terms of
usability. The second in a series of questionnaires is the UEQ.



Here, VR IDE scored significantly better than Unity3D on the
scale of attractiveness, perspicuity, stimulation, and novelty
(Fig. 4 and Table II). From these results, we can conclude that
VR IDE is more attractive than the traditional 2D approach.

Fig. 4. UEQ VR IDE versus Unity 3D.

In terms of task completion time (Fig. 5), VR IDE per-
formed worse in each task. The participants solved the first
task in VR IDE in an average time of 2:35 min, while in
Unity 3D it took 1:37 min. The second task, where minimal
text input was required, was solved in VR IDE in 2:20 min, in
contrast to Unity 3D, where it took 1:43 min. In the third, the
most complex task, where the largest text input was required,
it took them 9:02 minutes to complete it. In Unity 3D, the
same result was achieved in 5:01 min.

When we compared the results of the third task for partic-
ipants who had experience with Unity 3D (14 participants),
the difference between the two groups decreased markedly
(Fig. 5 and TableI). This was due to the fact that some of the
previous outliers were included in the comparison of smaller
samples. The difference is still statistically significant, but
it may suggest that an experiment with a larger number of
participants should be carried out.

We can see that developing in our VR IDE does not reduce
the time required to code computer programs; however, in task
2 the difference was not statistically significant (Table I). The
differences in completion time were relatively small in each
of the 3 tasks.

Fig. 5. Comparison of times for each task; times are in minutes.

TABLE I
MANN-WHITNEY U TEST TO CALCULATE THE STATISTICAL
SIGNIFICANCE OF INDIVIDUAL TASK TIMES, ALPHA=0.05.

Task U p-value Z-index
1 273.5 0.006905 2.7014
2 245.5 0.05962 1.8836
3 309 0.00002427 4.2214

3 at least a beginner 149 0.00526 2.7907

TABLE II
UEQ TWO-SAMPLE T-TEST ASSUMING UNEQUAL VARIANCES, ALPHA =

0,05.

Scale p-value Result
Attractiveness 0,0027 Significant Difference

Perspicuity 0,0239 Significant Difference
Efficiency 0,1884 No Significant Difference

Dependability 0,6011 No Significant Difference
Stimulation 0,0001 Significant Difference

Novelty 0,0001 Significant Difference

V. DISCUSSION

In the comments collected as feedback, the participants
saw the importance of incorporating UML into software
development. They stated that it seamlessly interconnects
business logic with development. It can also quickly reveal the
hierarchy or arrangement of a program and its parts, making
it easier to find individual methods and attributes. They also
appreciated the sample scene where they could test their own
implementation at run-time. They also stated that as they
developed the game, they often forgot about the fact that they
were developing and felt as if they were part of the game
itself. Regarding the VR keyboard, the participants considered
it as the best way to write in VR, but it lacked a certain
degree of certainty, which was caused by a slight shift of the
hand model, which also affected the results. This could be
eliminated by the passthrough mode as previously discussed.
Surprisingly, users did not use speech recognition. Instead,
they entered short texts using a ray-cast keyboard, which they
judged to be ideal for such a purpose. They were discouraged
by the volume at which they had to give commands while
using this feature. An interesting comment regarding possible
improvements was the incorporation of highlighting of classes
in the UML diagram after selecting a game object in the
sample scene. The last of the suggestions was to incorporate
hand gestures. This feature was requested due to the long time
required by the application to switch from VR controllers to
hand tracking that was utilized by the VR keyboard. We could
not affect this behavior as it is the current limitation of the
Oculus Integration library. Adding support for hand gestures
would avoid this switching completely and thus significantly
reduce time required for text input.

VI. CONCLUSIONS & FUTURE WORK

We are convinced that there is a great potential of software
development in virtual reality. It is more attractive to users,
as we were especially convinced by the results of the UEQ



questionnaire. With the currently available VR technologies,
it is possible to get closer to the effectiveness of classical
development in a common real-world environment with 2D
displays, although the development time is slightly longer.
After improvements, both on the hardware and software side,
this aspect could be eliminated in the future, and software
development in VR will be competitive, if not outperform
traditional approaches.

Future work can be dedicated to further explore the benefits
of allowing collaborative software development in virtual
offices and experimentation with advanced UML visualizations
in VR systems such as multidimensional UML [12] or 3D
UML [4].
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